- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Banburski, Andrzej (2)
-
Poggio, Tomaso (2)
-
Galanti, Tomer (1)
-
Gupte, Aparna (1)
-
Liao, Qianli (1)
-
Rangamani, Akshay (1)
-
Xu, Mengjia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We overview several properties -- old and new -- of training overparametrized deep networks under the square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep homogeneous ReLU networks. We study the convergence to a solution with the absolute minimum $$\rho$$, which is the product of the Frobenius norms of each layer weight matrix, when normalization by Lagrange multipliers (LM) is used together with Weight Decay (WD) under different forms of gradient descent. A main property of the minimizers that bounds their expected error {\it for a specific network architecture} is $$\rho$$. In particular, we derive novel norm-based bounds for convolutional layers that are orders of magnitude better than classical bounds for dense networks. Next we prove that quasi-interpolating solutions obtained by Stochastic Gradient Descent (SGD) in the presence of WD have a bias towards low rank weight matrices -- that, as we also explain, should improve generalization. The same analysis predicts the existence of an inherent SGD noise for deep networks. In both cases, we verify our predictions experimentally. We then predict Neural Collapse and its properties without any specific assumption -- unlike other published proofs. Our analysis supports the idea that the advantage of deep networks relative to other classifiers is greater for the problems that are appropriate for sparse deep architectures such as CNNs. The deep reason compositionally sparse target functions can be approximated well by ``sparse'' deep networks without incurring in the curse of dimensionality.more » « less
-
Gupte, Aparna; Banburski, Andrzej; Poggio, Tomaso (, Center for Brains, Minds and Machines (CBMM))Neural network classifiers are known to be highly vulnerable to adversarial perturbations in their inputs. Under the hypothesis that adversarial examples lie outside of the sub-manifold of natural images, previous work has investigated the impact of principal components in data on adversarial robustness. In this paper we show that there exists a very simple defense mechanism in the case where adversarial images are separable in a previously defined $(k,p)$ metric. This defense is very successful against the popular Carlini-Wagner attack, but less so against some other common attacks like FGSM. It is interesting to note that the defense is still successful for relatively large perturbations.more » « less
An official website of the United States government

Full Text Available